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Abstract. This paper addresses the task of detecting intrusions in the
form of malicious attacks on programs running on a host computer sys-
tem by inspecting the trace of system calls made by these programs.
We use ‘attack-tree’ type generative models for such intrusions to se-
lect features that are used by a Support Vector Machine Classifier. Our
approach combines the ability of an HMM generative model to handle
variable-length strings, i.e. the traces, and the non-asymptotic nature
of Support Vector Machines that permits them to work well with small
training sets.

1 Introduction

This article concerns the task of monitoring programs and processes running on
computer systems to detect break-ins or misuse. For example, programs like
sendmail and finger on the UNIX operating system run with administra-
tive privileges and are susceptible to misuse because of design short-comings.
Any user can pas specially crafted inputs to these programs and effect ‘Buffer-
overflow’ (or some such exploit) and break into the system. To detect such
attacks, the execution of vulnerable programs should be screened at run-time.
This can be done by observing the trace (sequence of operating system calls; with
or without argument values) of the program. In [3], S. Hofmeyr et.al. describe a
method of learning to discriminate between sequences of system calls (without
argument values) generated by normal use and misuse of processes that run with
(root) privileges. In their scheme, a trace is flagged to be anomalous if its similar-
ity to example (training) traces annotated as normal falls below a threshold; the
similarity measure is based on the extent of partial matches with short sequences
derived from the training traces. From annotated examples of traces, they com-
pile a list of subsequences for comparing (at various positions) with a given trace
and flag anomalous behavior when a similarity measure crosses a threshold. In
[15], A. Wespi et. al. use the Teiresias pattern matching algorithm on the traces
in a similar manner to flag off anomalous behavior. In both of the above, the
set of subsequences used for comparison has to be learnt from the annotated
set of traces (sequences of system calls) because, no other usable information or
formal specification on legal or compromised execution of programs is available.



The approach advocated in this article is to obtain a compact representation of
program behavior and use it (after some reduction) to select features to be used
with a Support Vector Machine learning classifier.

Let Y be the set of all possible system calls. A trace Y is then an element of
Y ∗ which is the set of all strings composed of elements of Y . For a given program,
let the training set be T = {(Yi, Li)|i = 1, . . . , T}, where Li ∈ {0, 1}, is the
label corresponding to trace Yi, 0 for normal traces and 1 for attack traces. The
detection problem then is to come up with a rule L̂, based on the training set, that
attempts to minimize the probability of misclassification Pe = Pr[L̂(Y) �= L(Y)].
What is of more interest to system administrators is the trade-off between the
probability of detection PD = Pr[L̂(Y) = 1|L(Y) = 1] and the probability of
false alarms PFA = Pr[L̂(Y) = 1|L(Y) = 0] that the classifier provides. These
probabilities are independent of the probabilities of occurrence of normal and
malicious traces.

Annotation (usually manual) of live traces is a difficult and slow procedure.
Attacks are also rare occurrences. Hence, traces corresponding to attacks are
few in number. Likewise, we dont even have a good representative sample of
traces corresponding to normal use. Hence, regardless of the features used, we
need to use non-parametric classifiers that can handle finite (small) training
sets. Support Vector Machine learning carves out a decision rule reflecting the
complicated statistical relationships amongst features from finite training sets
by maximizing true generalization (strictly speaking, a bound on generalization)
instead of just the performance on the training set. To use Support Vector Ma-
chines, we need to map each variable length trace into a (real-vector-valued)
feature space where Kernel functions (section 4) can be used. This conversion is
performed by parsing the raw traces into shorter strings and extracting models
of program execution from them.

2 MODELS FOR ATTACKS

The malicious nature of a program is due to the presence of a subsequence, not
necessarily contiguous, in its trace of system calls. For the same type of attack
on the host, there are several different combinations of system calls that can
be used. Furthermore, innocuous system calls or sequences can be injected into
various stages of program execution (various segments of the traces). Thus the
intrinsic variety of attack sequences and the padding with harmless calls leads
to a polymorphism of traces for the same plan of attack. Real attacks have a
finite (and not too long) underlying attack sequence of system calls because they
target specific vulnerabilities of the host. This and the padding are represented
in a ‘plan of attack’ called the Attack Tree [12].

2.1 Attack Trees

An Attack Tree (A )[12] is a directed acyclic graph (DAG) with a set of nodes
and associated sets of system calls used at these nodes. It represents a hierarchy



of pairs of tasks and methods to fulfill those tasks. These nodes and sets of
system calls are of the following three types:

1. V = {v1, v2, . . . , vk1}, the nodes representing the targeting of specific vul-
nerabilities in the host system, and a corresponding collection of subsets of
Y : Y V = {Y v

1 , Y v
2 , . . . , Y v

k1
} representing the possible system-calls that

target those vulnerabilities.
2. P = {℘1, ℘2, . . . , ℘k2}, the set of instances where padding can be done

along with a corresponding collection of subsets of Y ∪ {ε} (ε is the
null alphabet signifying that no padding system-call has been included):
Y P = {Y ℘

1 , Y ℘
2 , . . . , Y ℘

k2
} .

3. F = {f1, f2, . . . , fk3}, the final states into which the scheme jumps after
completion of the attack plan along with a collection of subsets of Y ∪ {ε}:
Y F = {Y f

1 , Y f
2 , . . . , Y f

k3
}; a set that is not of much interest from the point

of view of detecting attacks.

There may be multiple system calls issued while at a state with possible restric-
tions on the sequence of issue. The basic attack scheme encoded in the Attack
Tree is not changed by modifications such as altering the padding scheme or the
amount of padding (time spent in the padding nodes). Given an attack tree, it
is straightforward to find the list (L A ⊂ Y ∗) of all traces that it can generate.
But given a trace, we don’t have a scheme to check if it could have been gen-
erated by A without searching through the list L A . Our intrusion detection
scheme needs to execute the following steps:

1. Learn about A from the training set T .
2. Form a rule to determine the likelihood of a given trace being generated by

A .

These objectives can be met by a probabilistic modeling of the Attack Tree.

2.2 Hidden Markov Models for Attack Trees

Given an Attack Tree A , we can set up an equivalent Hidden Markov model H1

that captures the uncertainties in padding and the polymorphism of attacks. The
state-space of H1, X 1 = {x1

1, x
1
2, . . . , x

1
n} (the superscript 1 corresponding to

the attack model (abnormal or malicious program) and the superscript 0 corre-
sponding to the normal program model) is actually the union: {x1

n}∪V ∪P∪F
with x1

n being the start state representing the start node with no attack initiated
and n = 1 + k1 + k2 + k3. We now need to describe the statistics of state tran-
sitions (with time replacing the position index along a trace) to reflect the edge
structure of A and to also reflect the duration of stay in the vulnerability and
padding nodes. The only allowed state transitions are the ones already in A and
self-loops at each of the states. The picture is completed by defining conditional
output probabilities given the state of system calls in a way that captures the
information in Y V and Y P . Thus we have, ∀ x1

i , x
1
j ∈ X 1, ∀ y

l
∈ Y ∪ {ε} and
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Fig. 1. An Attack Tree and its equivalent HMM with k1 = 5, k2 = 5, k3 = 1, n = 12.

∀ t ∈ N

P [X(t + 1) = x1
i |X(t) = x1

j ] = q1
ji, (1)

P [Y (t + 1) = y
l
|X(t) = x1

j ] = r1
jl

. (2)

We can write down a similar HMM for the normal traces also. This normal
HMM, H0 has as its state-space a set X 0 in general bigger than X 1, and cer-
tainly with a different state transition structure and conditional output proba-
bilities of system calls given the state. The associated probabilities are as follows.
∀ x0

i , x
0
j ∈ X 0, ∀ y

l
∈ Y and ∀ t ∈ N

P [X(t + 1) = x0
i |X(t) = x0

j ] = q0
ji, (3)

P [Y (t + 1) = y
l
|X(t) = x0

j ] = r0
jl

. (4)

We would like to represent the probabilities for the above HMMs as functions of
some vector θ of real-valued parameters so as to be able to use the framework of
[4] and [5]. In the next section, we use these parametric HMMs to derive a real
valued feature vector of fixed dimension for these variable length strings that
will enable us to use Support Vector Machines for classification.

3 REAL VALUED FEATURE VECTORS FROM
TRACES

Since we are dealing with variable length strings, we would like to extract the
features living in a subset of an Euclidean space on which kernel functions are



readily available enabling use of Support Vector Machines[14][1]. In [4] and [5],
each observation Y is either the output of a parametric HMM (Correct Hypoth-
esis H1) or not (Null Hypothesis H0). Then we can compute the Fisher score:

UY = ∇θ log (P [Y|H1, θ]) (5)

as the feature vector corresponding to each Y, θ being the real-vector valued
parameter. What is not clear in this set-up is how, given only the training set
T , the Fisher score is computed. For instance, the ith entry of UY will look like

(UY)i =
∂

∂θi
log (P [Y|H1, θ])

=
1

P [Y|H1, θ]
× ∂

∂θi
(P [Y|H1, θ]) (6)

This could clearly depend on θ. To use some feature like the Fisher score, we
need to identify a real-valued vector parameter θ and to completely specify the
computation of UY .

Let the sets of malicious and normal traces in the training set be:

M = { Y | (Y, L(Y)) ∈ T , L(Y) = 1}
N = { Y | (Y, L(Y)) ∈ T , L(Y) = 0}

Let n1, n0 be the sizes of the state-spaces of the attack and normal HMMs
respectively. For H1 we compute an estimate of probabilities Ĥ1 = {q̂1

ij , r̂
1
lj},

based on the Expectation Maximization algorithm[10][2]. We obtain an updated
set of estimates H̃1 = {q̃1

ij , r̃
1
lj} that (locally) increases the likelihood of M (i.e.

of the traces in M) by maximizing the auxiliary function as below:

H̃1 = argmax
H

∑
Y∈M

EĤ1 [log P (Y; H) |Y] (7)

This step can be executed by the following(in the same manner as equation (44)
of [10]):

q̃1
ji =

q̂1
ji

( ∑
Y∈M

∂
∂q̂1

ji
P

(
Y; Ĥ1

))

n1∑
k=1

q̂1
jk

( ∑
Y∈M

∂
∂q̂1

jk
P

(
Y; Ĥ1

)) (8)

r̃1
ji =

r̂1
ji

( ∑
Y∈M

∂
∂r̂1

ji
P

(
Y; Ĥ1

))

s∑
k=1

r̂1
jk

( ∑
Y∈M

∂
∂r̂1

jk
P

(
Y; Ĥ1

)) (9)

where for simplicity the null output ε is not considered. A variant of this idea is
a scheme where instead of the summation over all Y ∈ M, we repeat the update



separately for each Y ∈ M (in some desired order) as follows:

q̃1
ji =

q̂1
ji

(
∂

∂q̂1
ji

P
(
Y; Ĥ1

))
n1∑

k=1

q̂1
jk

(
∂

∂q̂1
jk

P
(
Y; Ĥ1

)) (10)

r̃1
ji =

r̂1
ji

(
∂

∂r̂1
ji

P
(
Y; Ĥ1

))
s∑

k=1

r̂1
jk

(
∂

∂r̂1
jk

P
(
Y; Ĥ1

)) (11)

Ĥ1 is set equal to the update H̃1 and the above steps are repeated till some
criterion of convergence is met. We will now specify the initial value of Ĥ1 with
which this recursion gets started. The acyclic nature of the Attack Tree means
that, with an appropriate relabelling of nodes, the state-transition matrix is
upper triangular:

q1
ji > 0 ⇔ i ≥ j

or block-upper triangular if some states (padding states for instance) are allowed
to communicate with each other. As initial values for the EM algorithm, we can
take(the equi-probable assignment):

q̂1
ji =

1
n1 − j + 1

, ∀i ≥ j (12)

noting that equation (8) preserves the triangularity. Similarly, we can take:

r̂1
jl =

1
s

∀ l, j. (13)

Since we want to be alert to variations in the attack by padding, it is not a good
idea to start with a more restrictive initial assignment for the conditional output
probabilities unless we have reliable information, such as constraints imposed by
the Operating System, or ‘tips’ of an ‘expert-hacker’ . Such system-dependent
restrictions, in the form of constraints on some of the probabilities q1

ji, r
1
jl fur-

ther focus our attention on the real vulnerabilities in the system. To further
sharpen our attention, we can augment M, by adding to it, its traces segmented
by comparing with the traces in N and using any side information; essentially
an attempt at stripping off padding. These segmented traces would be given
smaller weights in the EM recursion (7). Going further in that direction, we can,
instead of using the EM algorithm use various segmentations of the traces in
T (into n1 parts) and estimate the probabilities {q1

ji, r
1
jl}. Even though we face

difficulties such as a large number of unknowns, a relatively small training set,
and the problem of settling on a local optimum point in the EM algorithm, we
are banking on the robustness of the Support Vector Machine classifier that uses
the parameters of the generative model. We can compute similar estimates(Ĥ0)
for the HMM representing the normal programs even though they do not, in
general, admit simplifications like triangularity of the state-transition matrix.



The parameter vector we are interested in is the following:

θ =
[
q11 , q12 , · · · , q21 , · · · , q

NN
, r11 , · · · , r

sN

]T (14)

N being the larger of n1, n0; setting to zero those probabilities that are not
defined in the smaller model. This vector can be estimated for the two HMMs
H1, H0 : θ̂1, θ̂0 simply from Ĥ1, Ĥ0.

For any trace, be it from T or from the testing set, we can define the following
feature vector:

UY =
[∇θ log

(
P [Y|H1, θ]

) |θ=θ̂1

]
(15)

This vector measures the likelihood of a given trace being the output of the
Attack Tree model and can be the basis of a Signature-based Intrusion Detection
Scheme. On the other hand, we can use the information about normal programs
gathered in H0 to come up with

UY =
[∇θ log

(
P [Y|H1, θ]

) |θ=θ̂1

∇θ log
(
P [Y|H0, θ]

) |θ=θ̂0

]
(16)

which can be used for a Combined Signature and Anomaly-based detection. Some-
thing to be kept in mind is that the parameter vector (and hence the feature
vectors) defined by (14) will contain many useless entries (with values zero) be-
cause we do not use the triangularity of the state-transition matrix for H1 or
any system dependent restrictions and because we artificially treat (in (14)) the
HMMs to be of equal size. Instead, we can define different(smaller) parameter
vectors θM and θN for the malicious and normal HMMs respectively and con-
siderably shrink the feature vectors. Also for each feature vector in (15) and the
two ‘halves’ of the vector in (16), there is a constant scaling factor in the form
of the reciprocal of the likelihood of the trace given the HMM of interest(as
displayed in equation (6)). This constant scaling tends to be large because of the
smallness of the concerned likelihoods. We can store this likelihood as a separate
entry in the feature vector without any loss of information. A similar issue crops
up in the implementation of the EM algorithm: the forward and backward prob-
abilities needed for the computations in (8), (9), (10) and (11), tend to become
very small for long observation sequences, making it important to have a high
amount of decimal precision

4 THE SVM ALGORITHM AND NUMERICAL
EXPERIMENTS

Support Vector Machines (SVMs)[14] are non-parametric classifiers designed to
provide good generalization performance even on small training sets. A SVM
maps input (real-valued) feature vectors (x ∈ X with labels y ∈ Y ) into a
(much) higher dimensional feature space (z ∈ Z) through some nonlinear map-
ping (something that captures the nonlinearity of the true decision boundary).



In a feature space, we can classify the labelled feature vectors (zi, yi) using
hyper-planes:

yi[< zi, w > +b] ≥ 1 (17)

and minimize the functional Φ(w) = 1
2 < w, w >. The solution to this quadratic

program can be obtained from the saddle point of the Lagrangian:

L(w, b, α) =
1
2

< w, w > −
∑

αi (yi[< zi, w > +b] − 1) (18)

w∗ =
∑

yiα
∗
i zi, α∗

i ≥ 0; (19)

Those input feature vectors in the training set that have positive α∗
i are called

Support Vectors S = {zi|α∗
i > 0} and because of the Karush-Kuhn-Tucker opti-

mality conditions, the optimal weight can be expressed in terms of the Support
Vectors alone.

w∗ =
∑
S

yiα
∗
i zi, α∗

i ≥ 0; (20)

This determination of w fixes the optimal separating hyper-plane. The above
method has the daunting task of transforming all the input raw features xi

into the corresponding zi and carrying out the computations in the higher di-
mensional space Z. This can be avoided by finding a symmetric and positive
semi-definite function, called the Kernel function, between pairs of xi

K : X × X → R
+ ∪ {0} , K(a, b) = K(b, a) ∀a, b ∈ X (21)

Then, by a theorem of Mercer, a transformation f : X → Z is induced for which,

K(a, b) =< f(a), f(b) >
Z

∀a, b ∈ X (22)

Then the above Lagrangian optimization problem gets transformed to the max-
imization of the following function of αi:

W (α) =
∑

αi − 1
2

∑
αiαjyiyjK(xi, xj) (23)

w∗ =
∑

yiα
∗
i zi, α∗

i ≥ 0; (24)

the support vectors being the ones corresponding to the positive αs. The set
of hyper-planes considered in the higher dimensional space Z have a small es-
timated VC dimension[14]. That is the main reason for the good generalization
performance of SVMs.

Now that we have real vectors for each trace, we are at full liberty to use the
standard kernels of SVM classification. Let u1 , u2 ∈ R

n,. We have the Gaussian
Kernel

K(u1 , u2) = exp
(
− 1

2σ2
(u1 − u2)

T (u2 − u2)
)

, (25)

the Polynomial Kernel

K(u1 , u2) = (uT
1
u2 + c1)d + c2, c1, c2 ≥ 0, d ∈ N (26)



or the Fisher Kernel

K(u1 , u2) = uT
1
I−1u2 ; I = EY [UY UT

Y ] (27)

Having described the various components of our scheme for intrusion detec-
tion and classification, we provide below a description of the overall scheme and
experiments aimed to provide results on its performance. The overall detection
scheme executes the following steps:

1. For the given T1 attack traces of system calls Yi, we estimate using the EM
algorithm a HMM model H1 for an attack with n1 states.

2. For given T0 normal traces of system calls, Yi, we estimate a HMM model
H0 for the normal situation with n0 states.

3. We compute the Fisher scores for either a signature-based intrusion detec-
tion or a combined signature and anomaly-based intrusion detection using
equations (15) and (16).

4. Using the Fisher scores we train a SVM employing either one of the kernels
(Gaussian, Polynomial, Fisher).

5. Given a test trace of system calls Y, we let the SVM classifier decide as to
whether the decision should be 1 (attack) or 0 (normal). The Fisher scores
of Y are computed and entered in the SVM classifier.

We performed numerical experiments on a subset of the data-set for host based
intrusion detection from the University of New Mexico [13][3]. We need to dis-
tinguish between normal and compromised execution on the Linux Operating
system of the lpr program which are vulnerable because they run as a privi-
leged processes. In the experiments, we tried various kernels in the SVMs. The
performance evaluation is based on the computation of several points of the re-
ceiver operating characteristic (ROC) curve of the overall classifier; i.e. the plot
of the curve for the values of the probabilities of correct classification (detection)
PD vs the false alarm probability PFA.

In our experiments with HMMs (both attack and normal), we encountered
two difficulties due to the finite precision of computer arithmetic (the long
double data type of C/C++ for instance is not adequate):

1. The larger the assumed number of states for the HMM, the smaller the
values of the probabilities {qji}. For a fixed set of traces, like in our case,
increasing the number of states from say, 5 to 10 or any higher value, did not
affect the EM estimation (or the computation of the Fisher score) because,
despite the attacks and normal executions being carried out in more than 5
(or n) stages, the smaller values of {qji} make the EM algorithm stagnate
immedeately at a local optimum.

2. Having long traces (200 is a nominal value for the length in our case) means
that values of the forward and backward probabilities [10] αt(j), βt(j) become
negligible in the EM algorithm as well as in the computation of the Fisher
score. For the EM algorithm, this means being stagnant at a local optimum
and for the computation of the Fisher score, it means obtaining score vectors
all of whose entries are zero.



3. While computing the Fisher scores (15,16), if any element of θ is very small
at the point of evaluation, the increased length of the overall Fisher score has
a distorting effect on the SVM learning algorithm. For instance, while using
linear kernels, the set of candidate separating hyper-planes in the feature
space is directly constrained by this. This problem is actually the result of
including the statistics of non-specific characteristics (background-noise, so
to speak) like the transition and conditional output probabilities related to
the basic system calls like break, exit, uname etc.

To combat these problems of numerical precision, one can go for an enhanced
representation of small floating point numbers by careful book-keeping. But this
comes at the cost of a steep increase in the complexity of the overall detection
system and the time taken for computations.

We propose a solution that simplifies the observations and segments each
trace into small chunks with the idea of viewing the trace as a (short) string of
these chunks. This solution removes the floating point precision problems.

4.1 SVM classification using reduced HMMs

We describe a technique for deriving a reduced order Attack HMM (or a normal
HMM) from the traces in the training set. We choose a small number of states
to account for the most characteristic behavior of attacks (or of Normal program
execution). We also use the observation that system-calls that constitute intru-
sions (attack system calls from the set Y V ) are not exactly used for padding
(i.e. Y V ∩Y P ≈ ∅ ). For every trace Y, we can compute the ratio of the number
of occurrences of a system-call s and the length of that trace. Call this number
ρs(Y). We can also compute the ratio of the position of first occurrence of a
system-call s and the length of the trace (same as the ratio of the length of
the longest prefix of Y not containing s and the length of Y). Call this number
δs(Y). Calculate these ratios ρs(Y),δs(Y) for all system calls s ∈ Y , and for all
T1 malicious traces in T .

For every s ∈ Y , find the median of ρs(Y) over all T1 malicious traces in T .
Call it ρ̂1

s. Similarly, compute the medians δ̂1
s ∀s ∈ Y . We prefer the median over

the mean or the mode because we want to avoid being swayed by outliers. We now
propose a scheme for identifying attack states {v}. Choose γ1, γ2 : 0 < γ1, γ2 < 1.
Find subsets {s1, s2, . . . , sk} of Y such that

|ρ̂1
si
− ρ̂1

sj
| < γ1 , |δ̂1

si
− δ̂1

sj
| < γ2 , ∀i, j ∈ {1, 2, . . . , k} (28)

Increase or decrease γ1, γ2 so that we are left with a number of subsets equal
to the desired number of states n1. In practice, most, if not all, of these subsets
are disjoint. These subsets form the attack states. However, the alphabet is
no longer Y but Y ∗. Thus, for the state xj = {s1, s2, . . . , sk}, all strings of
the form ‘w1, sπ(1)1, w2, sπ(2), w3, . . . , wk, sπ(k), wk+1’ are treated as the same
symbol corresponding to it (with w1, w2, w3, . . . , wk, wk+1 ∈ Y ∗ and with π a
permutation on {1, 2, . . . , k} such that δ̂1

sπ(i)
is non-decreasing with i). We call

this symbol (also a regular expression) yj .
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Fig. 2. Plots of the values of ρ̂1
s and δ̂1

s over normal (dashed lines) and attack (solid
lines) sequences used in obtaining reduced HMMs for the lpr (normal) and lprcp

(attack) programs (the system call index has been renamed to ignore those system
calls never used).
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Fig. 4. Plots of the values of ρ̂1
s and ρ̂0

s over normal (dashed lines) and attack (solid
lines) sequences used in obtaining reduced HMMs for the lpr (normal) and lprcp

(attack) programs (For the Eject program: sys call 12 = pipe, sys call 13 = fork For
the Ps program: sys call 10 = fork, sys call 11 = fcntl)

Now, we can assign numerical values for {qji} and for {rjl}. The transition
probability matrix will be given a special structure. Its diagonal has entries of
the form : τi and the first super-diagonal has its entries equal to 1 − τi and all
other entries of the matrix are equal to 0. This is the same as using a flat or
left-right HMM [10]. We set the conditional output probability of observing the
compound output yj corresponding to state xj to be µj : 0 < µj < 1. We treat all
other outputs at this state as the same and this wild-card symbol (representing
Y ∗−{yj} ) gets the probability 1−µj. We can make the values µj all the same or
different but parameterized in some way, along with the τis by a single variable
so that we can easily experiment with detection performance as a function of
the µj , τi. A point to be kept in mind all along is that we need to parse any
given trace Y into n1 (or more) contiguous segments. When there are different
segmentations possible, all of them can be constructed and the corresponding
feature vectors tested by the classifier.

The above steps can be duplicated for constructing the normal HMM also.
A sharper and more compact representation is obtained if the Attack tree and
the Normal tree do not share common subsets as states. In particular, consider a
subset (of Y ) x = {s1, s2, . . . , sl} that meets condition (28) for both the normal
and attack traces:

|ρ̂L
si
− ρ̂L

sj
| < γL

1 , |δ̂L
si
− δ̂L

sj
| < γL

2 ,

∀i, j ∈ {1, 2, . . . , k}, 0 < γL
1 , γL

2 < 1, L ∈ {0, 1} (29)

Then, x should clearly not be a state in either the Attack HMM or the Normal
HMM. The signature based detection scheme would as usual use only the reduced
attack HMM. The combined signature and anomaly-based approach would use
both the attack and normal HMMS.

Now the overall detection scheme executes the following steps:



1. For the given T1 attack traces of system calls Yi, we parse the Yi into n1

blocks and estimate using the reduced HMM model H1 for an attack with
n1 states.

2. For given T0 normal traces of system calls, Yi, we parse the Yi into n2 blocks
and estimate a reduced HMM model H0 for the normal situation with n0

states.
3. We compute the Fisher scores for either a signature-based intrusion detec-

tion or a combined signature and anomaly-based intrusion detection using
equations (15) and (16).

4. Using the Fisher scores we train a SVM employing either one of the kernels
(Gaussian, Polynomial, Fisher).

5. Given a test trace of system calls Y, we let the SVM classifier decide as to
whether the decision should be 1 (attack) or 0 (normal). The Fisher scores
of Y are computed and entered in the SVM classifier.

We performed numerical experiments on live Lpr and Lprcp (the attacked
version of Lpr) traces in the data-set for host based intrusion detection [13][3]. We
found that the quadratic programming step of the SVM learning algorithm did
not converge when we used linear and polynomial kernels (because of very long
feature vectors). On the other hand, SVM learning was instantaneous when we
used the Gaussian kernel on the same set of traces. The value of the parameter σ
in equation (25) made no significant difference. We used the Gaussian kernel (25)
We selected a small training set (about one percent of the whole set of traces
with the same ratio of intrusions as in the whole set). We trained the SVM
with different trade-offs between the training-error and the margin (through the
parameter c in [7]) and different number of hidden states for the Attack and
Normal HMMs . We averaged the resulting PD, PFA (on the whole set) over
different random choices of the training set T .

We also performed experiments on the eject and ps attacks in the 1999 MIT-
LL-DARPA data set [8]. We used traces from the first three weeks of training.
In the case of the eject program attack, we had a total of 8 normal traces and
3 attack traces in the BSM audit records for the first three weeks. Needless to
say, the SVM classifier made no errors at any size of the reduced HMMs. The
interesting fact to observe was that the single compound symbol (28) (for the
most reduced HMM) ‘pipe*fork’ was enough to classify correctly, thus learning
the Buffer-overflow step from only the names of the system calls in the traces.
The ps trace-set can be said to have more statistical significance. We had 168
normal and 3 attack instances. However, for all sizes of reduced HMMs, all of
the Fisher scores for the Attack traces were the same as for the Normal ones.
Here, too, at all resolutions, the buffer-overflow step was learnt cleanly: All the
reduced HMMs picked the symbol ‘fork*fnctl’ to be part of their symbol set
(28). Here too, the SVM made no errors at all. The plots of ρ̂1

s and ρ̂0
s in Fig.3

complete the picture. This data-set make us beleive that this approach learns
efficiently buffer-overflow type of attacks. It also highlights the problem of a lack
of varied training instances.



We used the SVMlight[7] program for Support Vector Learning authored by
Thorsten Joachims.

5 SVM classification using gappy-bigram count feature
vectors

Here, we present an algorithm that uses a simpler feature that avoids the esti-
mation of the gradient of the likelihoods. For any trace Y ∈ Y ∗, we can write
down a vector of the number of occurrences of the so-called gappy-bigrams in it.
A bigram is a string (for our purposes, over the alphabet Y ) of length two that is
specified by its two elements in order. A gappy-bigram ‘rλs’ is any finite-length
string (over the set Y ) that begins with the alphabet s and terminates with the
alphabet s̀. Let

#ss̀(Y) = the number of occurences of the gappy − bigram ‘ sλs̀ ’ in Y (30)

where
s, s̀ ∈ Y , λ ∈ Y ∗ ∪ {ε} , ε being the null string. (31)

We write down the T 2-long vector of counts #ss̀(Y) for all (s, s̀) ∈ Y × Y .

C(Y) =




#s1s1

#s1s2

...
#sT sT


 (32)

We call the feature vector C(Y), the count score of Y and use this to modify the
earlier scheme using the Fisher score.

The new overall detection scheme executes the following steps:

1. We compute the count scores using equation (32).
2. Using the count scores we train a SVM employing either one of the kernels

(Gaussian, Polynomial, Fisher).
3. Given a test trace of system calls Y, we let the SVM classifier decide as to

whether the decision should be 1 (attack) or 0 (normal). The count scores
of Yi are computed and entered in the SVM classifier.

We performed numerical experiments on live Lpr and Lprcp (the attacked version
of Lpr) traces in the data-set for host based intrusion detection [13][3]. We found
that the quadratic programming step of the SVM learning algorithm did not
converge when we used linear and polynomial kernels (because of very long
feature vectors). On the other hand, SVM learning was instantaneous when we
used the Gaussian kernel on the same set of traces. The value of the parameter
σ in equation (25) made no significant difference. Our experiments were of the
following two types:



1. We selected a small training set (about one percent of the whole set of traces
with the same ratio of intrusions as in the whole set). We trained the SVM
with different trade-offs between the training-error and the margin (through
the parameter c in [7]). We averaged the resulting PD, PFA (on the whole
set) over different random choices of the training set T . Our average (as
well as the median) values of PD, PFA were 0.95 and 0.0.

2. We used the whole set of traces available for training the SVM with different
tradeoffs (again, the parameter c in [7]) and used the leave-one-out cross-
validation ξα ([7]) estimate of PD, PFA. We obtained the following values
for PD, PFA : 0.992, 0.0.

We have only one measured point on the ROC curve. We also note that this
detection system behaves like an anomaly-based intrusion detection system.

6 CONCLUSIONS

We have described a method for incorporating the structured nature of attacks,
as well as any specific system-dependent or other ‘expert-hacker’ information,
in the HMM generative model for malicious programs. Using the generative
model, we have captured the variability of attacks and compressed into a vector
of real values, the set of variables to be examined for flagging off attacks. We
use these derived feature vectors in place of variable-length strings, as inputs
to the Support Vector Machine learning classifier which is designed to work
well with small training sets. We have presented a method for deriving reduced
HMMs using the temporal correlations (28, 29) between system calls in traces.
An alternative large-scale HMM classifier would need to use techniques from the
area of large vocabulary speech recognition [6] to grapple with the numerical
problems associated with full-scale generative models for attacks and normal
program execution. We also presented the gappy-bigram count feature vector
for SVM based classification. We need to develop versions of the above intrusion
detection systems that work in real-time, and those that work on distributed
programs like a network transaction.
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